Matrix Theory
Fundamentals of Vectors
Geometric Basics
Definition and Representation
- A vector is a quantity with both magnitude and direction
- Notation: $\vec{v}$ or $\mathbf{v}$ or $\begin{pmatrix} x \ y \ z \end{pmatrix}$
- Components: $\vec{v} = \langle v_1, v_2, v_3 \rangle$ in 3D space
Geometric Interpretation
- Directed line segment from initial point to terminal point
- Length (magnitude): $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$
- Two vectors are equal if they have same magnitude and direction
Position Vectors
- Vector from origin to a point $P(x,y,z)$
- Written as: $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
Direction Vectors
- Unit vector in direction of $\vec{v}$: $\hat{v} = \frac{\vec{v}}{|\vec{v}|}$
- Represents pure direction (magnitude = 1)
Unit Vectors
- Vectors with magnitude 1: $|\vec{u}| = 1$
- Direction cosines: $\cos \alpha = \frac{v_1}{|\vec{v}|}, \cos \beta = \frac{v_2}{|\vec{v}|}, \cos \gamma = \frac{v_3}{|\vec{v}|}$
Standard Basis Vectors
Vector | Components | Description |
---|---|---|
$\mathbf{i}$ | $\langle 1,0,0 \rangle$ | Unit vector in x-direction |
$\mathbf{j}$ | $\langle 0,1,0 \rangle$ | Unit vector in y-direction |
$\mathbf{k}$ | $\langle 0,0,1 \rangle$ | Unit vector in z-direction |
Basic Vector Operations
Addition and Subtraction
- Addition: $\vec{a} + \vec{b} = \langle a_1+b_1, a_2+b_2, a_3+b_3 \rangle$
- Subtraction: $\vec{a} - \vec{b} = \langle a_1-b_1, a_2-b_2, a_3-b_3 \rangle$
Parallelogram Law
- Sum of vectors forms diagonal of parallelogram
- $\vec{a} + \vec{b} = \vec{d}$ where $\vec{d}$ is diagonal
Triangle Inequality
- $|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$
- Equality holds if and only if vectors are parallel
Scalar Multiplication
- $c\vec{v} = \langle cv_1, cv_2, cv_3 \rangle$
- Properties:
- $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$
- $(c_1 + c_2)\vec{a} = c_1\vec{a} + c_2\vec{a}$
- $|c\vec{v}| = |c||\vec{v}|$
Systems of Linear Equations
Matrix Form (Ax = b)
$$ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ \vdots \ x_n \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \ \vdots \ b_m \end{bmatrix} $$
Solution Types
Type | Condition | Geometric Interpretation |
---|---|---|
Unique Solution | $\text{rank}(A) = \text{rank}([A|b]) = n$ | Lines/planes intersect at one point |
Infinite Solutions | $\text{rank}(A) = \text{rank}([A|b]) < n$ | Lines/planes overlap |
No Solution | $\text{rank}(A) < \text{rank}([A|b])$ | Lines/planes are parallel |
Geometric Interpretation
- 2D: Intersection of lines
- 3D: Intersection of planes
- Higher dimensions: Intersection of hyperplanes
Solution Methods
Gaussian Elimination
-
Forward Elimination
-
Convert matrix to row echelon form (REF)
- Create zeros below diagonal
[1 * * *]
[0 1 * *]
[0 0 1 *]
[0 0 0 1]
- Back Substitution
- Solve for variables from bottom up
- $x_n \rightarrow x_{n-1} \rightarrow \cdots \rightarrow x_1$
Gauss-Jordan Elimination
- Convert to reduced row echelon form (RREF)
- Create zeros above and below diagonal
[1 0 0 *]
[0 1 0 *]
[0 0 1 *]
Key Operations
Operation | Description | Notation |
---|---|---|
Row Swap | Swap rows $i$ and $j$ | $R_i \leftrightarrow R_j$ |
Scalar Multiplication | Multiply row $i$ by $c$ | $cR_i$ |
Row Addition | Add multiple of row $i$ to row $j$ | $R_j + cR_i$ |
Matrices
Types and Properties
Type | Definition | Properties |
---|---|---|
Square | $n \times n$ matrix | - Same number of rows and columns - Can have determinant - May be invertible |
Rectangular | $m \times n$ matrix | - Different number of rows and columns - No determinant |
Identity ($I_n$) | $a_{ij} = \begin{cases} 1 & \text{if } i=j \ 0 & \text{if } i\neq j \end{cases}$ | - Square matrix - 1's on diagonal, 0's elsewhere - $AI = IA = A$ |
Zero ($0$) | All entries are 0 | - Can be any dimension - $A + 0 = A$ |
Diagonal | $a_{ij} = 0$ for $i \neq j$ | - Non-zero elements only on main diagonal |
Triangular | Upper: $a_{ij} = 0$ for $i > j$ Lower: $a_{ij} = 0$ for $i < j$ |
- Square matrix - Determinant = product of diagonal entries |
Basic Matrix Operations
Addition and Subtraction
- Only defined for matrices of same dimensions
- $(A \pm B){ij} = a$} \pm b_{ij
- Commutative: $A + B = B + A$
- Associative: $(A + B) + C = A + (B + C)$
Scalar Multiplication
- $(cA){ij} = c(a)$
- Distributive: $c(A + B) = cA + cB$
- $(cd)A = c(dA)$
Transpose
- $(A^T){ij} = a$
- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- $(cA)^T = cA^T$
- $(AB)^T = B^T A^T$
Row Echelon Form
A matrix is in row echelon form if:
- All zero rows are at the bottom
- Leading coefficient (pivot) of each nonzero row is to the right of pivots above
- All entries below pivots are zero
Reduced Row Echelon Form
Additional conditions for RREF:
- Leading coefficient of each nonzero row is 1
- Each leading 1 is the only nonzero entry in its column
Pivot Positions
- First nonzero element in each row
- Determines rank of matrix
- Maximum number of linearly independent columns
Leading Entries
Properties:
- Always nonzero
- Leftmost nonzero entry in row
- Each leading entry is right of leading entries above it
Vector Spaces
Axioms of Vector Spaces
Let $V$ be a vector space over field $F$ with vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars $c, d \in F$:
- Closure under addition: $\mathbf{u} + \mathbf{v} \in V$
- Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- Additive identity: $\exists \mathbf{0} \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- Additive inverse: $\exists -\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- Scalar multiplication closure: $c\mathbf{v} \in V$
- Scalar multiplication distributivity: $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- Vector distributivity: $(c + d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$
- Scalar multiplication associativity: $c(d\mathbf{v}) = (cd)\mathbf{v}$
- Scalar multiplication identity: $1\mathbf{v} = \mathbf{v}$
Linear Independence
Definition
Vectors ${\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ are linearly independent if: $$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + ... + c_n\mathbf{v}_n = \mathbf{0}$$ implies $c_1 = c_2 = ... = c_n = 0$
Tests and Algorithms
Test | Description | Result |
---|---|---|
Matrix Test | Form matrix $A$ with vectors as columns and solve $A\mathbf{x}=\mathbf{0}$ | Independent if only solution is trivial |
Determinant | For square matrix of vectors | Independent if det$(A) \neq 0$ |
Rank | Compute rank of matrix $A$ | Independent if rank = number of vectors |
Span
Definition
The span of vectors ${\mathbf{v}_1, ..., \mathbf{v}_n}$ is: $$\text{span}{\mathbf{v}_1, ..., \mathbf{v}_n} = {c_1\mathbf{v}_1 + ... + c_n\mathbf{v}_n : c_i \in F}$$
Geometric Interpretation
- 1 vector: line through origin
- 2 vectors: plane through origin (if independent)
- 3 vectors: 3D space (if independent)
Basis
A basis is a linearly independent set of vectors that spans the vector space.
Standard Basis
For $\mathbb{R}^n$: ${\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n}$ where: $\mathbf{e}_i = [0, ..., 1, ..., 0]^T$ (1 in $i$th position)
Dimension
The dimension of a vector space is the number of vectors in any basis.
Basis Theorem
Every basis of a vector space has the same number of vectors.
Dimension Theorem
For finite-dimensional vector space $V$:
- Any linearly independent set can be extended to a basis
- Any spanning set can be reduced to a basis
- $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$
Subspaces
Tests for Subspaces
A subset $W$ of vector space $V$ is a subspace if:
- $\mathbf{0} \in W$
- Closed under addition: $\mathbf{u}, \mathbf{v} \in W \implies \mathbf{u} + \mathbf{v} \in W$
- Closed under scalar multiplication: $c \in F, \mathbf{v} \in W \implies c\mathbf{v} \in W$
Common Subspaces
Subspace | Definition | Dimension |
---|---|---|
Null Space | $N(A) = {\mathbf{x}: A\mathbf{x}=\mathbf{0}}$ | $n - \text{rank}(A)$ |
Column Space | $C(A) = {\mathbf{y}: \mathbf{y}=A\mathbf{x}}$ | $\text{rank}(A)$ |
Row Space | $R(A) = C(A^T)$ | $\text{rank}(A)$ |
Advanced Vector Operations (cont. 1)
Dot Product
The scalar product of two vectors.
Geometric Definition
$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\theta)$$ where $\theta$ is the angle between vectors
Algebraic Definition
For vectors in $\mathbb{R}^n$: $$\vec{a} \cdot \vec{b} = \sum_{i=1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n$$
Properties
Property | Formula | Description |
---|---|---|
Commutative | $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ | Order doesn't matter |
Distributive | $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ | Distributes over addition |
Scalar Multiplication | $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$ | Scalars can be factored out |
Self-Dot Product | $\vec{a} \cdot \vec{a} = |\vec{a}|^2$ | Dot product with itself equals magnitude squared |
Angle Formula
$$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$
Projection Formula
Vector projection of $\vec{a}$ onto $\vec{b}$: $$\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\vec{b}$$
Cross Product
Vector product resulting in a vector perpendicular to both input vectors (3D only).
Right-Hand Rule
- Point index finger in direction of first vector
- Point middle finger in direction of second vector
- Thumb points in direction of cross product
Properties
Property | Formula | Description |
---|---|---|
Anti-commutative | $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ | Order matters |
Distributive | $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ | Distributes over addition |
Magnitude | $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(\theta)$ | Area of parallelogram |
Perpendicular | $\vec{a} \times \vec{b} \perp \vec{a}$ and $\vec{a} \times \vec{b} \perp \vec{b}$ | Result is perpendicular to both vectors |
Triple Product
Scalar triple product: $$\vec{a} \cdot (\vec{b} \times \vec{c}) = \det[\vec{a} \; \vec{b} \; \vec{c}]$$ Represents volume of parallelepiped
Linear Combinations
Sum of vectors with scalar coefficients: $$c_1\vec{v_1} + c_2\vec{v_2} + ... + c_n\vec{v_n}$$
Geometric Interpretation
- For two vectors: Points on plane formed by vectors
- For three vectors: Points in space formed by vectors
- Span: Set of all possible linear combinations
Matrix Properties (cont. 1)
Rank
The rank of a matrix is the dimension of the vector space spanned by its columns (or rows).
Full Rank
A matrix has full rank when:
- For m×n matrix: rank = min(m,n)
- Column rank = Row rank
- For square matrix: rank = n ⟺ matrix is invertible
Rank Theorems
Theorem | Statement |
---|---|
Rank-Nullity | For m×n matrix A: rank(A) + nullity(A) = n |
Product Rank | rank(AB) ≤ min(rank(A), rank(B)) |
Addition Rank | rank(A + B) ≤ rank(A) + rank(B) |
Trace
The trace of a square matrix is the sum of elements on the main diagonal. $$tr(A) = \sum_{i=1}^n a_{ii}$$
Properties
- tr(A + B) = tr(A) + tr(B)
- tr(cA) = c⋅tr(A)
- tr(AB) = tr(BA)
- tr(A^T) = tr(A)
- For eigenvalues λᵢ: tr(A) = ∑λᵢ
Determinant
For square matrix A, det(A) or |A| measures the scaling factor of the linear transformation.
Properties
- det(AB) = det(A)⋅det(B)
- det(A^T) = det(A)
- det(A^{-1}) = \frac{1}{det(A)}
- For triangular matrices: det = product of diagonal entries
- det(cA) = c^n det(A) for n×n matrix
Calculation Methods
Cofactor Expansion
For n×n matrix: $$det(A) = \sum_{j=1}^n a_{ij}C_{ij}$$ where Cᵢⱼ is the (i,j) cofactor
Row/Column Expansion
Choose any row/column i: $$det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij}M_{ij}$$ where Mᵢⱼ is the minor
Triangular Method
- Convert to upper triangular using row operations
- Multiply diagonal elements
- Account for row operation signs
Cramer's Rule
For system Ax = b with det(A) ≠ 0: $$x_i = \frac{det(A_i)}{det(A)}$$ where Aᵢ is A with column i replaced by b
Matrix Operations (cont. 1)
Matrix Multiplication
For matrices $A_{m×n}$ and $B_{n×p}$: $$(AB){ij} = \sum$$}^n a_{ik}b_{kj
Properties
- Distributive: $A(B + C) = AB + AC$
- Associative: $(AB)C = A(BC)$
- Scalar multiplication: $c(AB) = (cA)B = A(cB)$
- Identity: $AI = IA = A$
- Zero matrix: $A0 = 0A = 0$
Non-commutativity
- Generally, $AB \neq BA$
- Exception: If $A$ and $B$ commute, they are called "commuting matrices"
- Special cases where $AB = BA$:
- When $A$ or $B$ is identity matrix
- When $A$ or $B$ is scalar multiple of identity
- When $A$ and $B$ are diagonal matrices
Associativity
$(AB)C = A(BC)$ always holds for conformable matrices
Inverse
For square matrix $A$, if $AA^{-1} = A^{-1}A = I$, then $A^{-1}$ is the inverse of $A$
Existence Conditions
- Matrix must be square
- Matrix must be non-singular (determinant ≠ 0)
- rank(A) = n for n×n matrix
Properties
Property | Formula |
---|---|
Double Inverse | $(A^{-1})^{-1} = A$ |
Product Inverse | $(AB)^{-1} = B^{-1}A^{-1}$ |
Scalar Inverse | $(cA)^{-1} = \frac{1}{c}A^{-1}$ |
Transpose Inverse | $(A^{-1})^T = (A^T)^{-1}$ |
Calculation Methods
Adjugate Method
For an n×n matrix: $$A^{-1} = \frac{1}{\det(A)}\text{adj}(A)$$ where adj(A) is the adjugate matrix
Gaussian Elimination
- Form augmented matrix $\lbrack A|I \rbrack$
- Convert left side to identity matrix
- Right side becomes $A^{-1}$
Elementary Matrices
- Result from applying elementary row operations to identity matrix
- Types:
- Row swap: $E_{ij}$
- Row multiplication: $E_i(c)$
- Row addition: $E_{ij}(c)$
- Properties:
- Always invertible
- $(E_1E_2...E_k)A = A'$ where $A'$ is row reduced form
Conjugate Transpose
For matrix $A$:
- Denoted as $A^H$ or $A^*$
- $(a_{ij})^H = \overline{a_{ji}}$
- Properties:
- $(A^H)^H = A$
- $(AB)^H = B^HA^H$
- $(A + B)^H = A^H + B^H$
- For real matrices, $A^H = A^T$
Systems of Linear Equations (cont. 1)
Homogeneous Systems ($A\mathbf{x} = \mathbf{0}$)
A system where all constants are zero: $A\mathbf{x} = \mathbf{0}$
Trivial Solution
- Always has solution $\mathbf{x} = \mathbf{0}$ (zero vector)
- Exists for any coefficient matrix $A$
Nontrivial Solutions
- Exist if and only if $\text{rank}(A) < n$ where $n$ is number of variables
- Equivalent to $\text{det}(A) = 0$ for square matrices
- Number of free variables = $n - \text{rank}(A)$
Consistency Theorems
Consistent System Conditions
Condition | System is Consistent When |
---|---|
Rank Test | $\text{rank}(A) = \text{rank}([A|\mathbf{b}])$ |
Square Matrix | $\text{det}(A) \neq 0$ |
General | Solutions exist if $\mathbf{b}$ is in column space of $A$ |
Fredholm Alternative
For system $A\mathbf{x} = \mathbf{b}$, exactly one of these is true:
- System has a solution
- $\mathbf{y}^T A = \mathbf{0}$ has a solution with $\mathbf{y}^T\mathbf{b} \neq 0$
Cramer's Rule
For system $A\mathbf{x} = \mathbf{b}$ where $A$ is $n \times n$ with $\text{det}(A) \neq 0$: $$x_i = \frac{\text{det}(A_i)}{\text{det}(A)}$$ Where $A_i$ is matrix $A$ with column $i$ replaced by $\mathbf{b}$
Matrix Inverse Method
For square system $A\mathbf{x} = \mathbf{b}$ where $A$ is invertible: $$\mathbf{x} = A^{-1}\mathbf{b}$$
Requirements:
- $A$ must be square
- $\text{det}(A) \neq 0$
- Computationally expensive for large systems
Linear Transformations
Definition
A linear transformation $T: V \to W$ is a function between vector spaces that preserves:
- Addition: $T(u + v) = T(u) + T(v)$
- Scalar multiplication: $T(cv) = cT(v)$
Matrix Representation
Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be represented by a unique $m \times n$ matrix $A$
Standard Matrix
For transformation $T$, the standard matrix $A$ is formed by: $$A = [T(e_1) \; T(e_2) \; \cdots \; T(e_n)]$$ where $e_i$ are standard basis vectors
Properties
Property | Definition | Test |
---|---|---|
Kernel (Null Space) | $\text{ker}(T) = {v \in V : T(v) = 0}$ | Solve $Ax = 0$ |
Range (Image) | $\text{range}(T) = {T(v) : v \in V}$ | Span of columns of $A$ |
One-to-One (Injective) | $T(v_1) = T(v_2) \implies v_1 = v_2$ | $\text{ker}(T) = {0}$ |
Onto (Surjective) | $\text{range}(T) = W$ | Columns span $W$ |
Isomorphism | Bijective linear transformation | One-to-one and onto |
Special Transformations
Rotation
- 2D rotation by angle $\theta$: $$R_\theta = \begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta \end{bmatrix}$$
Reflection
- Across x-axis: $\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$
- Across y-axis: $\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$
Projection
- Onto x-axis: $\begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$
- Onto y-axis: $\begin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$
Scaling
- Scale by factors $a$ and $b$: $$\begin{bmatrix} a & 0 \ 0 & b \end{bmatrix}$$
Shearing
- Horizontal shear by $k$: $$\begin{bmatrix} 1 & k \ 0 & 1 \end{bmatrix}$$
- Vertical shear by $k$: $$\begin{bmatrix} 1 & 0 \ k & 1 \end{bmatrix}$$
Inner Product Spaces
Definition
An inner product on a vector space $V$ is a function $\langle \cdot,\cdot \rangle: V \times V \to \mathbb{R}$ (or $\mathbb{C}$)
Properties
Property | Mathematical Form | Description |
---|---|---|
Positive Definiteness | $\langle x,x \rangle \geq 0$ and $\langle x,x \rangle = 0 \iff x = 0$ | Always non-negative, zero only for zero vector |
Symmetry | $\langle x,y \rangle = \overline{\langle y,x \rangle}$ | Complex conjugate for complex spaces |
Linearity | $\langle ax+by,z \rangle = a\langle x,z \rangle + b\langle y,z \rangle$ | Linear in first argument |
Norm
The norm induced by inner product: $|x| = \sqrt{\langle x,x \rangle}$
Properties
- Non-negative: $|x| \geq 0$
- Positive definite: $|x| = 0 \iff x = 0$
- Homogeneous: $|cx| = |c||x|$
- Triangle inequality: $|x + y| \leq |x| + |y|$
Distance Function
$$d(x,y) = |x-y| = \sqrt{\langle x-y,x-y \rangle}$$
Orthogonality
Orthogonal Vectors
Two vectors $x,y$ are orthogonal if $\langle x,y \rangle = 0$
Orthogonal Sets
- Set of vectors where each pair is orthogonal
- If normalized, called orthonormal set
- Orthonormal basis: orthonormal set that spans space
Orthogonal Matrices
Matrix $Q$ is orthogonal if $Q^TQ = QQ^T = I$
Properties
Property | Formula | Note |
---|---|---|
Inverse | $Q^{-1} = Q^T$ | Transpose equals inverse |
Determinant | $\det(Q) = \pm 1$ | Always unit magnitude |
Column/Rows | $\langle q_i,q_j \rangle = \delta_{ij}$ | Form orthonormal set |
Length Preservation | $|Qx| = |x|$ | Preserves distances |
Orthogonal Complements
For subspace $W$, orthogonal complement $W^⊥$: $$W^⊥ = {x \in V : \langle x,w \rangle = 0 \text{ for all } w \in W}$$
Orthogonal Projections
Projection onto subspace $W$: $$\text{proj}W(x) = \sumw_i$$ where ${w_1,\ldots,w_k}$ is basis for $W$}^k \frac{\langle x,w_i \rangle}{|w_i|^2
For orthonormal basis: $$\text{proj}W(x) = \sum^k \langle x,w_i \rangle w_i$$
Special Matrices (cont. 1)
Type | Definition | Properties | Example |
---|---|---|---|
Symmetric | $A = A^T$ | - Diagonal elements can be any real number - Elements symmetric across main diagonal - All eigenvalues are real |
$$\begin{bmatrix} 1 & 2 & 3\ 2 & 4 & 5\ 3 & 5 & 6 \end{bmatrix}$$ |
Skew-symmetric | $A = -A^T$ | - Diagonal elements must be zero - $a_{ij} = -a_{ji}$ - All eigenvalues are imaginary or zero |
$$\begin{bmatrix} 0 & 2 & -1\ -2 & 0 & 3\ 1 & -3 & 0 \end{bmatrix}$$ |
Orthogonal | $AA^T = A^TA = I$ | - $A^{-1} = A^T$ - Columns/rows form orthonormal basis - $\det(A) = \pm 1$ - Preserves lengths and angles |
$$\begin{bmatrix} \cos\theta & -\sin\theta\ \sin\theta & \cos\theta \end{bmatrix}$$ |
Idempotent | $A^2 = A$ | - Eigenvalues are only 0 or 1 - Trace = rank - Used in projection matrices |
$$\begin{bmatrix} 1 & 0\ 0 & 0 \end{bmatrix}$$ |
Nilpotent | $A^k = 0$ for some $k$ | - All eigenvalues = 0 - Trace = 0 - $k \leq n$ where $n$ is matrix size |
$$\begin{bmatrix} 0 & 1\ 0 & 0 \end{bmatrix}$$ |
Additional Properties:
-
Symmetric Matrices:
-
All real symmetric matrices are diagonalizable
-
$x^TAx$ is a quadratic form
-
Orthogonal Matrices:
-
Every column/row has unit length
- Any two columns/rows are perpendicular
-
Preserves inner products: $(Ax)^T(Ay) = x^Ty$
-
Idempotent Matrices:
-
$I - A$ is also idempotent if $A$ is idempotent
-
Rank = Trace for idempotent matrices
-
Nilpotent Matrices:
- The minimal $k$ for which $A^k = 0$ is called the index of nilpotency
- Characteristic polynomial is $\lambda^n$
Change of Basis
Transition Matrices
A transition matrix $P$ transforms coordinates from one basis to another: $$P_{B←C} = [v_1 \; v_2 \; \cdots \; v_n]$$ where $v_i$ are the basis vectors of B expressed in basis C
Operation | Formula | Meaning |
---|---|---|
Change from C to B | $[v]B = P[v]_C$ | Vector v in basis B |
Change from B to C | $[v]C = P[v]_B$ | Vector v in basis C |
Inverse relation | $P_{C←B} = P_{B←C}^{-1}$ | Matrices are inverses |
Similar Matrices
Two matrices A and B are similar if: $$B = P^{-1}AP$$ where P is an invertible matrix
Properties:
- Similar matrices have same eigenvalues
- Similar matrices have same determinant
- Similar matrices have same trace
- Similar matrices have same rank
Coordinate Vectors
For a vector $v$ and basis $B = {b_1, b_2, ..., b_n}$: $$[v]_B = \begin{bmatrix} c_1 \ c_2 \ \vdots \ c_n \end{bmatrix}$$ where $v = c_1b_1 + c_2b_2 + ... + c_nb_n$
Orthogonalization
Gram-Schmidt Process
Converting basis ${v_1, v_2, ..., v_n}$ to orthogonal basis ${u_1, u_2, ..., u_n}$:
- $u_1 = v_1$
- $u_2 = v_2 - \text{proj}_{u_1}(v_2)$
- $u_3 = v_3 - \text{proj}{u_1}(v_3) - \text{proj}(v_3)$
General formula: $$u_k = v_k - \sum_{i=1}^{k-1} \text{proj}_{u_i}(v_k)$$ where $\text{proj}_u(v) = \frac{\langle v,u \rangle}{\langle u,u \rangle}u$
QR Decomposition
Matrix A can be decomposed as: $$A = QR$$ where:
- Q is orthogonal matrix ($Q^TQ = I$)
- R is upper triangular matrix
Orthonormal Basis
Construction
- Start with any basis
- Apply Gram-Schmidt process
- Normalize each vector: $e_i = \frac{u_i}{|u_i|}$
Properties
Property | Description |
---|---|
Orthogonality | $\langle e_i,e_j \rangle = 0$ for $i \neq j$ |
Normality | $|e_i| = 1$ for all i |
Transition Matrix | P is orthogonal ($P^T = P^{-1}$) |
Coordinates | $[v]_B = [\langle v,e_1 \rangle \; \langle v,e_2 \rangle \; \cdots \; \langle v,e_n \rangle]^T$ |
Eigenvalues and Eigenvectors
Definitions
- Eigenvalue ($\lambda$): A scalar value where $A\vec{v} = \lambda\vec{v}$ for some nonzero vector $\vec{v}$
- Eigenvector ($\vec{v}$): A nonzero vector satisfying $A\vec{v} = \lambda\vec{v}$ for some scalar $\lambda$
Characteristic Equation
$$\det(A - \lambda I) = 0$$ where:
- $A$ is the square matrix
- $\lambda$ is the eigenvalue
- $I$ is the identity matrix
Characteristic Polynomial
$$p(\lambda) = \det(A - \lambda I)$$
- Degree equals matrix dimension
- Roots are eigenvalues
Properties
Property | Description |
---|---|
Sum | $\sum \lambda_i = \text{trace}(A)$ |
Product | $\prod \lambda_i = \det(A)$ |
Number | ≤ dimension of matrix |
Geometric Multiplicity
- Number of linearly independent eigenvectors for a given eigenvalue
- ≤ algebraic multiplicity
- = dimension of null space of $(A - \lambda I)$
Algebraic Multiplicity
- Multiplicity of eigenvalue as root of characteristic polynomial
- ≥ geometric multiplicity
Eigenspace
$$E_\lambda = \text{null}(A - \lambda I)$$
- Subspace spanned by eigenvectors for eigenvalue $\lambda$
- Dimension = geometric multiplicity
Diagonalization
$A = PDP^{-1}$ where:
- $D$ is diagonal matrix of eigenvalues
- $P$ is matrix of eigenvectors
Diagonalizability Conditions
Matrix $A$ is diagonalizable if and only if:
- Geometric multiplicity = algebraic multiplicity for all eigenvalues
- Sum of dimensions of eigenspaces = matrix dimension
Diagonalization Process
- Find eigenvalues (solve characteristic equation)
- Find eigenvectors for each eigenvalue
- Form $P$ from eigenvectors as columns
- Form $D$ with eigenvalues on diagonal
- Verify $A = PDP^{-1}$
Similar Matrices
- $A$ and $B$ similar if $B = P^{-1}AP$ for invertible $P$
- Similar matrices have same eigenvalues
- Similar matrices have same characteristic polynomial
Special Cases
Repeated Eigenvalues
- May have fewer linearly independent eigenvectors
- Need generalized eigenvectors if geometric multiplicity < algebraic multiplicity
Complex Eigenvalues
- Occur in conjugate pairs for real matrices
- Complex eigenvectors also occur in conjugate pairs
Applications
Powers of Matrices
$$A^n = PD^nP^{-1}$$
- Simplifies computation of matrix powers
- Useful for recursive sequences
Difference Equations
For system $\vec{x}_{k+1} = A\vec{x}_k$:
- General solution involves eigenvalues and eigenvectors
- Stability determined by $|\lambda| < 1$
Differential Equations
For system $\frac{d\vec{x}}{dt} = A\vec{x}$:
- Solutions of form $\vec{x}(t) = ce^{\lambda t}\vec{v}$
- Stability determined by $\text{Re}(\lambda) < 0$
Important Theorems
Fundamental Theorem of Linear Algebra
For a linear transformation $T: V \rightarrow W$ and its matrix $A$:
- $\text{Null}(A) \oplus \text{Row}(A^T) = \mathbb{R}^n$
- $\text{Col}(A) \oplus \text{Null}(A^T) = \mathbb{R}^m$
- $\dim(\text{Null}(A)) + \dim(\text{Col}(A)) = n$
- $\text{rank}(A) + \text{nullity}(A) = n$
Cayley-Hamilton Theorem
Every square matrix $A$ satisfies its own characteristic equation: $$p(A) = 0 \text{ where } p(\lambda) = \det(A - \lambda I)$$
Spectral Theorem
For symmetric matrices $A \in \mathbb{R}^{n \times n}$:
- All eigenvalues are real
- Eigenvectors of distinct eigenvalues are orthogonal
- $A = PDP^T$ where:
- $P$ is orthogonal ($P^TP = I$)
- $D$ is diagonal containing eigenvalues
Triangle Inequality
For vectors $x, y$: $$|x + y| \leq |x| + |y|$$
Cauchy-Schwarz Inequality
For vectors $x, y$: $$|x^Ty| \leq |x||y|$$
- Equality holds if and only if vectors are linearly dependent
Invertible Matrix Theorem
The following statements are equivalent for a square matrix $A$:
- $A$ is invertible
- $\det(A) \neq 0$
- $\text{rank}(A) = n$
- $\text{Null}(A) = {0}$
- Columns are linearly independent
- $Ax = b$ has unique solution for all $b$
Matrix Factorization Theorems
LU Decomposition
For matrix $A$: $$A = LU$$ where:
- $L$ is lower triangular
- $U$ is upper triangular
- Exists if all leading principal minors are nonzero
QR Decomposition
For matrix $A$: $$A = QR$$ where:
- $Q$ is orthogonal ($Q^TQ = I$)
- $R$ is upper triangular
- Always exists for full-rank matrices
Cholesky Decomposition
For symmetric positive definite matrix $A$: $$A = LL^T$$ where:
- $L$ is lower triangular
- $L^T$ is upper triangular
- Elements are real
Advanced Topics
Singular Value Decomposition (SVD)
Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as $A = U\Sigma V^T$
Singular Values
- Diagonal entries $\sigma_i$ of $\Sigma$ matrix
- $\sigma_i = \sqrt{\lambda_i(A^TA)}$
- Always real and non-negative
- Ordered: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$
U and V Matrices
- $U$: $m \times m$ orthogonal matrix (left singular vectors)
- $V$: $n \times n$ orthogonal matrix (right singular vectors)
- $\Sigma$: $m \times n$ diagonal matrix with singular values
Applications
Application | Description |
---|---|
Low-rank approximation | Truncate to $k$ largest singular values |
Image compression | Reduce dimensionality while preserving structure |
Principal Component Analysis | Use right singular vectors as principal components |
Pseudoinverse | $A^+ = V\Sigma^+U^T$ |
Jordan Canonical Form
For matrix $A$, exists invertible $P$ such that $P^{-1}AP = J$
Jordan Blocks
$$ J_k(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \ 0 & \lambda & 1 & \cdots & 0 \ \vdots & \vdots & \ddots & \ddots & \vdots \ 0 & 0 & \cdots & \lambda & 1 \ 0 & 0 & \cdots & 0 & \lambda \end{bmatrix} $$
Generalized Eigenvectors
- Chain: $(A-\lambda I)^kv_k = 0$
- $v_1$ is regular eigenvector
- $(A-\lambda I)v_{i+1} = v_i$
Positive Definite Matrices
Symmetric matrix $A$ where $x^TAx > 0$ for all nonzero $x$
Tests for Positive Definiteness
Test | Condition |
---|---|
Eigenvalue | All eigenvalues > 0 |
Leading Principals | All leading principal minors > 0 |
Cholesky | Exists unique lower triangular $L$ with $A = LL^T$ |
Quadratic Form | $x^TAx > 0$ for all nonzero $x$ |
Applications
- Optimization problems
- Covariance matrices
- Least squares solutions
- Energy functions
Linear Operators
Maps between vector spaces preserving linear structure
Adjoint Operators
- For operator $T$, adjoint $T^$ satisfies $\langle Tx,y \rangle = \langle x,T^y \rangle$
- Matrix representation: conjugate transpose
- Properties:
- $(T^)^ = T$
- $(ST)^ = T^S^*$
- $(\alpha T)^ = \overline{\alpha}T^$
Self-Adjoint Operators
- $T = T^*$
- Real eigenvalues
- Orthogonal eigenvectors
- Spectral theorem applies
Dual Spaces
Vector space $V^*$ of linear functionals on $V$
Dual Basis
- For basis ${e_i}$ of $V$, dual basis ${e_i^}$ satisfies $e_i^(e_j) = \delta_{ij}$
- Dimension equals original space
- Natural pairing: $\langle f,v \rangle = f(v)$
Dual Maps
For linear map $T: V \to W$, dual map $T^: W^ \to V^$ $$\langle T^f,v \rangle = \langle f,Tv \rangle$$
Tensor Products
$V \otimes W$ is universal space for bilinear maps
Definition
- Elementary tensors: $v \otimes w$
- Bilinear in components:
- $(av_1 + bv_2) \otimes w = av_1 \otimes w + bv_2 \otimes w$
- $v \otimes (aw_1 + bw_2) = av \otimes w_1 + bv \otimes w_2$
Properties
Property | Description |
---|---|
Dimension | $\dim(V \otimes W) = \dim(V)\dim(W)$ |
Associativity | $(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$ |
Distributivity | $(U \oplus V) \otimes W \cong (U \otimes W) \oplus (V \otimes W)$ |
Field multiplication | $(\alpha v) \otimes w = v \otimes (\alpha w) = \alpha(v \otimes w)$ |
Multilinear Algebra
Tensors
- Multilinear maps: $T: V_1 \times ... \times V_k \to W$
- Type $(r,s)$: $r$ contravariant, $s$ covariant indices
- Transformation rules under basis change
Exterior Algebra
- Antisymmetric tensors
- Wedge product $\wedge$
- Properties:
- Anticommutativity: $v \wedge w = -w \wedge v$
- Associativity: $(u \wedge v) \wedge w = u \wedge (v \wedge w)$
- Distributivity over addition
- $k$-forms and differential forms